Answer
See below
Work Step by Step
Given:
$$mv\frac{dv}{dy}=mg-kv^2$$
Let $v^2=u \rightarrow \frac{du}{dy}=2v\frac{dv}{dy}$
We will have: $\frac{m}{2}\frac{du}{dt}=mg-ku\\
\rightarrow u'+\frac{k}{m}u=g$
then $u=e^{-\int \frac{k}{m}dy}(c_1+\int e^{\int \frac{k}{m}dy}gdy)=c_1e^{-\frac{ky}{m}}+\frac{mg}{k}$
Since $u(0)=0 \rightarrow c_1=-\frac{mg}{k}$
Hence, $v^2=\frac{mg}{k}(1-e^{-\frac{ky}{m}})$