Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 110: 30

Answer

$C=x^2+xe^{-y}-y$

Work Step by Step

We are given: $$(1+2xe^y)dx-(e^y+x)dy=0$$ We have that: $$M(x,y)=1+2xe^y \wedge N(x,y)=e^y+x$$ then $$M'(x,y)=2xye^y$$ $$N'(x,y)=-1$$ So this equation is not exist. But we have: $$\frac{M'_y-N'_y}{M}=\frac{1+2xe^y}{1+2xe^y}=1$$ Integrating factor: $$I=e^{-\int dy}=e^{-y}$$ Multiplying the equation by $e^{-y}$ $$(e^{-y}+2x)dx-(1+xe^{-y})dy=0$$ There exists a potential function $\phi$ satisfies: $$\frac{\partial \phi}{\partial x}=M \wedge \frac{\partial \phi}{\partial y}=N$$ $$\frac{\partial \phi}{\partial x}=e^{-y}+2x \wedge \frac{\partial \phi}{\partial y}=-(1+xe^{-y})$$ Integrating $\frac{\partial \phi}{\partial x}=e^{-y}+2x $ we get $$\phi=x^2+xe^{-y}+f(y)$$ Since $\frac{\partial \phi}{\partial y}=-xe^{-y}-1$ We obtain: $$f'(y)=-1 \rightarrow f(y)=-yC$$ $C$ is constant of integration The potential solution is: $$\phi=x^2+xe^{-y}-y$$ Hence general solution is $C=x^2+xe^{-y}-y$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.