Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 110: 33

Answer

$y=\sqrt \frac{\ln x}{3x^3 \ln x -x^3 +C}$

Work Step by Step

We are given: $$2x(\ln x)y'-y=-9x^3y^3\ln x$$ Dividing both sides by $2x(\ln x)$ $$y'-\frac{1}{2x(\ln x)}y=-\frac{9}{2}x^2y^3$$ The equation is a Berrnoulli equation. Dividing the last equation by $y^3$ $$y^{-3}\frac{dy}{dx}-\frac{1}{2x(\ln x)}y^{-2}=-\frac{9}{2}x^2$$ Assume that $u=y^{-2} \rightarrow \frac{du}{dx}=-2y^{-3}\frac{dy}{dx}$ The equation becomes: $$-\frac{1}{2}\frac{du}{dx}-\frac{1}{2x(\ln x)}u=-\frac{9}{2}x^2$$ $$\frac{du}{dx}+\frac{1}{x)\ln x)}u=9x^2$$ Integrating factor: $$I=e^{\int \frac{1}{x(\ln x)}dx}=e^{\int \ln x dx}=\ln x$$ The equation becomes: $$\frac{d}{dx}(u\ln x)=9x^2 \ln x$$ Integrating both sides: $$u \ln x=3x^3 \ln x -x^3 +C$$ $$u=\frac{3x^3 \ln x -x^3 +C}{\ln x}$$ $$y^{-2}=\frac{3x^3 \ln x -x^3 +C}{\ln x}$$ The general solution is: $$y=\sqrt \frac{\ln x}{3x^3 \ln x -x^3 +C}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.