Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 110: 21

Answer

$y=\frac{2 \cos x}{\cos ^2x+C}$

Work Step by Step

We are given: $$y'+y(\tan x+y \sin x)=0$$ Dividing both sides by $y^2$ $$\frac{1}{y^2}\frac{dy}{dx}+\frac{1}{y}\tan x=\sin x $$ Assume that: $$u=\frac{dy}{dx} \rightarrow \frac{du}{dx}=-y^{-2}\frac{dy}{dx}$$ The equation becomes: $$-\frac{du}{dx}+u \tan x=\sin x$$ $$\frac{du}{dx}-u \tan x=-\sin x$$ Integrating factor: $$I=e^{-\int tan xdx}=e^{-\int - \ln(\cos x)dx}=\cos x$$ The equation becomes: $$\frac{d}{dx}(u\cos x)=-\sin x \cos x$$ Integrating both sides: $$u\cos x=\frac{1}{2}\cos^2x+C$$ $$u=\frac{1}{2}\cos x+\frac{C}{\cos x}$$ $$\frac{dy}{dx}=\frac{1}{2}\cos x+\frac{C}{\cos x}$$ Hence general solution is $y=\frac{2 \cos x}{\cos ^2x+C}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.