Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 110: 43

Answer

\[y(x)=6\large e^{\Large\frac{x^3}{3}}-1\]

Work Step by Step

$y'-x^2y=x^2$ ____(1) (1) is Linear differential equation Integrating Factor:- \[I(x)=e^{-\int x^2 dx}=e^{-\frac{x^3}{3}}\] Multiply (1) by $I(x)$ \[e^{-\frac{x^3}{3}}\frac{dy}{dx}-x^2e^{-\frac{x^3}{3}}y=x^2e^{-\frac{x^3}{3}}\] \[\frac{d}{dx}(ye^{-\frac{x^3}{3}})=x^2e^{-\frac{x^3}{3}}\] Integrating, $ye^{-\frac{x^3}{3}}=\int x^2e^{-\frac{x^3}{3}}dx+C$ ___(2) $C$ is constant of integration Put $t=-\frac{x^3}{3}\Rightarrow dt=-x^2 dx$ (2) becomes \[ye^{-\frac{x^3}{3}}=-\int e^t dt+C=-e^t+C\] $ye^{-\frac{x^3}{3}}=-e^{-\frac{x^3}{3}}+C$ ____(3) Using initial condition $y(0)=5$ $5=-1+C\Rightarrow C=6$ From (3) $y(x)=6e^{\frac{x^3}{3}}-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.