Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 110: 28

Answer

$y=(\frac{x-e^{-x}+C}{1+e^x})^2$

Work Step by Step

We are given: $$\frac{dy}{dx}+\frac{2e^x}{1+e^x}y=2\sqrt ye^{-x}$$ Dividing both sides by $y^{\frac{1}{2}}$ $$y^{-\frac{1}{2}}\frac{dy}{dx}+y^{\frac{1}{2}}\frac{2e^x}{1+e^x}y=2e^{-x}$$ Assume that $u=y^{\frac{1}{2}} \rightarrow \frac{du}{dx}=\frac{1}{2}y^{-\frac{1}{2}}\frac{dy}{dx}$ The equation becomes: $$2 \frac{du}{dx}+u\frac{2e^x}{1+e^x}=2e^{-x}$$ $$ \frac{du}{dx}+u\frac{e^x}{1+e^x}=e^{-x}$$ Integrating factor: $$I=e^{\int \frac{e^x}{1+e^x}dx}=e^{\int \ln|1+e^x|dx}=1+e^x$$ The equation becomes: $$\frac{d}{dx}(u(1+e^x))=e^{-x}(1+e^x)$$ Integrating both sides: $$u(1+e^x)=-e^{-x}+x+C$$ $$y^{\frac{1}{2}}=\frac{x-e^{-x}+C}{1+e^x}$$ Hence general solution is $y=(\frac{x-e^{-x}+C}{1+e^x})^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.