Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 110: 44

Answer

$y=\frac{1}{6}(\ln(\frac{5}{2}-\frac{3}{2}e^{-4x})$

Work Step by Step

We are given: $$e^{-3x+2y}dx+e^{x-4y}dy=0$$ $$\frac{dy}{dx}=\frac{e^{-3x+2y}}{e^{x-4y}}$$ $$\frac{dy}{dx}=-e^{6y}e^{-4x}$$ Rewrite as: $$e^{-6y}dy=e^{-4x}dx$$ Integrating both sides: $$-\frac{1}{6}e^{-6y}=\frac{1}{4}e^{-4x}+C$$ $C$ is a integration constant $$-2e^{-6y}=3e^{-4x}+C_1$$ $$e^{-6y}=-\frac{3}{2}e^{-4x}+C_2$$ $$-6y=\ln(-\frac{3}{2}e^{-4x}+C_2)$$ The general solution is $y=\frac{1}{6}(\ln(C_2-\frac{3}{2}e^{-4x})$ We are given $y(0)=0$ Substituting: $$\frac{1}{6}(\ln(C_2-\frac{3}{2}e^{0})=0$$ $$\ln(C_2-\frac{3}{2})=0$$ $$C=\frac{5}{2}$$ The final solution is: $$y=\frac{1}{6}(\ln(\frac{5}{2}-\frac{3}{2}e^{-4x})$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.