Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 110: 16

Answer

\[y(x)=\frac{1}{1-Ce^{\frac{x^3}{3}}}\]

Work Step by Step

Type:- Separable Differential Equation \[\frac{dy}{dx}=x^2y(y-1)\] Separating variables, \[\frac{dy}{y(y-1)}=x^2dx\] Integrating, \[\int\frac{1}{y(y-1)}dy=\int x^2dx+C_{1}\] $C_{1}$ is constant of integration \[\int\left[\frac{1}{y-1}-\frac{1}{y}\right]dy=\frac{x^3}{3}+C_{1}\] \[\ln|y-1|-\ln|y|=\frac{x^3}{3}+C_{1}\] \[\ln\left|\frac{y-1}{y}\right|=\frac{x^3}{3}+C_{1}\] \[\ln\left|1-\frac{1}{y}\right|=\frac{x^3}{3}+C_{1}\] \[1-\frac{1}{y}=Ce^{\frac{x^3}{3}}\] Where $C=e^{C_{1}}$ \[1-Ce^{\frac{x^3}{3}}=\frac{1}{y}\] \[y(x)=\frac{1}{1-Ce^{\frac{x^3}{3}}}\] Hence general solution is $y(x)=\Large\frac{1}{1-Ce^{\frac{x^3}{3}}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.