Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.12 Chapter Review - Additional Problems - Page 110: 38

Answer

$\ln |x|+C=\ln \frac{y+x}{y-x}-\frac{y^2+2xy}{2x^2}$

Work Step by Step

We are given: $$\frac{dy}{dx}=\frac{x^2+y^2}{x^2-y^2}$$ Assume that $V=\frac{y}{x} \rightarrow \frac{dy}{dx}=V+x\frac{dV}{dx}$ The equation becomes: $$V+x\frac{dV}{dx}=\frac{1}{1-V^2}+\frac{V^2}{1-V^2}$$ $$x\frac{dV}{dx}=\frac{1+V^2-V+V^3}{1-V^2}$$ $$x\frac{dV}{dx}=1-V+\frac{2V^2}{1-V^2}$$ $$(1-V+\frac{2V^2}{1-V^2})dV=\frac{1}{x}dx$$ Integrating both sides: $$V-\frac{V^2}{2}+\ln |1+V|-\ln|V-1|-2V=\ln |xC|$$ $$\ln |xC|=\ln\frac{V+1}{V-1}-\frac{V^2}{2}-V$$ $$\ln |xC|=\ln\frac{\frac{y}{x}+1}{\frac{y}{x}-1}-\frac{y^2}{2x^2}-\frac{y}{x}$$ $$\ln |xC|=\ln \frac{y+x}{y-x}-\frac{y^2+2xy}{2x^2}$$ The general solution is $\ln |x|+C=\ln \frac{y+x}{y-x}-\frac{y^2+2xy}{2x^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.