Answer
$(3x-1)(9x^{2}+3x+1)$
Work Step by Step
If $a$ and $b$ are real numbers, we know that $a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$.
Therefore, we know that $27x^{3}-1=(3x-1)((3x)^{2}+3x\times1+1^{2})=(3x-1)(9x^{2}+3x+1)$. In this case, $a=3x$ and $b=1$.