Answer
$2x(6x-1)(3x+2)$
Work Step by Step
Factor out the greatest common factor, $2x$
$=2x\left(18x^{2}+9x-2\right)$
When factoring $ax^{2}+bx+c$, we search for factors of $ac$ whose sum is $b,$
and, if we find them, we rewrite $bx$ and proceed to factor in groups.
Here, factors of $(18)\times(-2)=-36$ that add to $+9$ are ....$+12$ and $-3.$
$=2x\left(18x^{2}-3x+12x-2\right)$
$=2x\left[ \left(18x^{2}-3x\right)+(12x-2) \right]$
$=2x\left[ 3x(6x-1)+2(6x-1) \right]$
$=2x(6x-1)(3x+2)$