Answer
$3x^{3}(3x-5z)(2x+5z) $
Work Step by Step
Factor out the gratest common factor, $3x^{3}$
$=3x^{3}\left(6x^{2}+5xz-25z^{2}\right)$
When factoring $ax^{2}+bx+c$, we search for factors of $ac$ whose sum is $b,$
and, if we find them, we rewrite $bx$ and proceed to factor in groups.
Here, factors of $(6)\times(-25)=-150$ that add to $+5$ are ....$+15$ and $-10 .$
$=3x^{3}\left[ 6x^{2}-10xz+15xz-25z^{2} \right]$
$=3x^{3}\left[ \left(6x^{2}-10xz\right)+\left(15xz-25z^{2}\right) \right]$
$=3x^{3}\left[ 2x(3x-5z)+5z(3x-5z) \right]$
$=3x^{3}\left[ (3x-5z)(2x+5z) \right]$
$=3x^{3}(3x-5z)(2x+5z) $