Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.5 - Equations - 1.5 Exercises - Page 57: 100

Answer

$x=-\dfrac{3}{2}\pm\dfrac{3\sqrt{5}}{2}$

Work Step by Step

$x-\sqrt{9-3x}=0$ Take $\sqrt{9-3x}$ to the right side: $x=\sqrt{9-3x}$ Square both sides of the equation: $x^{2}=(\sqrt{9-3x})^{2}$ $x^{2}=9-3x$ Take all terms to the left side of the equation: $x^{2}+3x-9=0$ Use the quadratic formula to solve this equation. The formula is $x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$. For this equation, $a=1$, $b=3$ and $c=-9$. Substitute the known values into the formula and simplify: $x=\dfrac{-3\pm\sqrt{3^{2}-4(1)(-9)}}{2(1)}=\dfrac{-3\pm\sqrt{9+36}}{2}=...$ $...=\dfrac{-3\pm\sqrt{45}}{2}=\dfrac{-3\pm3\sqrt{5}}{2}=-\dfrac{3}{2}\pm\dfrac{3\sqrt{5}}{2}$ Neither of the solutions found makes the initial equation undefined, so the final answer is: $x=-\dfrac{3}{2}\pm\dfrac{3\sqrt{5}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.