Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.5 - Equations - 1.5 Exercises - Page 57: 72

Answer

$x = 3 \pm 2\sqrt2$

Work Step by Step

$Find$ $all$ $real$ $solutions$ $of$ $the$ $quadratic$ $equation:$ $x^2-6x+1 = 0$ Use the Quadratic Equation Formula: $x = \frac{-b \pm \sqrt {b^2-4ac}}{2a}$ $1x^2-6x+1$ $a = 1, b = -6, c = 1$ $x = \frac{-(-6) \pm \sqrt {(-6)^2- 4(1 \times 1)}}{2(1)}$ $x = \frac{6 \pm \sqrt {36- 4}}{2}$ $x = \frac{6 \pm \sqrt {32}}{2}$ [Note: $\sqrt {32} = \sqrt {16\times2} = \sqrt {16}\times\sqrt2$ = $4\sqrt2$] $x = \frac{6 \pm 4\sqrt {2}}{2}$ $x = \frac{6}{2} \pm \frac{4\sqrt2}{2}$ $x = 3 \pm 2\sqrt2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.