Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.5 - Equations - 1.5 Exercises - Page 57: 89

Answer

$x=-\dfrac{7}{5}$ and $x=2$

Work Step by Step

$\dfrac{1}{x-1}+\dfrac{1}{x+2}=\dfrac{5}{4}$ Evaluate the sum: $\dfrac{(x+2)+(x-1)}{(x-1)(x+2)}=\dfrac{5}{4}$ $\dfrac{2x+1}{x^{2}+x-2}=\dfrac{5}{4}$ Take $\dfrac{5}{4}$ to substract to the left side: $\dfrac{2x+1}{x^{2}+x-2}-\dfrac{5}{4}=0$ $\dfrac{(8x+4)-(5x^{2}+5x-10)}{4x^{2}+4x-8}=0$ Take $4x^{2}+4x-8$ to multiply to the right side. We get: $8x+4-5x^{2}-5x+10=0$ Simplify: $-5x^{2}+3x+14=0$ Solve using the quadratic formula. Here, $a=-5$, $b=3$ and $c=14$ $x=\dfrac{-3\pm\sqrt{3^{2}-4(-5)(14)}}{2(-5)}=\dfrac{-3\pm\sqrt{9+280}}{-10}=\dfrac{-3\pm\sqrt{289}}{-10}$ $...=\dfrac{-3\pm17}{-10}$ So, our two solutions are: $x=\dfrac{-3+17}{-10}=-\dfrac{7}{5}$ and $x=\dfrac{-3-17}{-10}=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.