Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.5 - Equations - 1.5 Exercises - Page 57: 118

Answer

The solutions are $x=\pm\sqrt{2-\sqrt{3}}$ and $x=\pm\sqrt{2+\sqrt{3}}$

Work Step by Step

$4x^{-4}-16x^{-2}+4=0$ Rewrite this equation: $\dfrac{4}{x^{4}}-\dfrac{16}{x^{2}}+4=0$ Multiply the whole equation by $x^{4}$: $x^{4}\Big(\dfrac{4}{x^{4}}-\dfrac{16}{x^{2}}+4=0\Big)$ $4-16x^{2}+4x^{4}=0$ Rearrange: $4x^{4}-16x^{2}+4=0$ Let $u$ be equal to $x^{2}$: $u=x^{2}$ $u^{2}=x^{4}$ Rewrite the equation using the new variable $u$: $4u^{2}-16u+4=0$ Solve this equation using the quadratic formula, which is $u=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$. For this equation, $a=4$, $b=-16$ and $c=4$. Substitute the known values into the formula and simplify: $u=\dfrac{-(-16)\pm\sqrt{(-16)^{2}-4(4)(4)}}{2(4)}=\dfrac{16\pm\sqrt{256-64}}{8}=...$ $...=\dfrac{16\pm\sqrt{192}}{8}=\dfrac{16\pm\sqrt{64\cdot3}}{8}=\dfrac{16\pm8\sqrt{3}}{8}=2\pm\sqrt{3}$ The solutions found are $u=2+\sqrt{3}$ and $u=2-\sqrt{3}$ Substitute $u$ back to $x^{2}$ and solve for $x$: $x^{2}=2+\sqrt{3}$ $x=\pm\sqrt{2+\sqrt{3}}$ $x^{2}=2-\sqrt{3}$ $x=\pm\sqrt{2-\sqrt{3}}$ The solutions are $x=\pm\sqrt{2-\sqrt{3}}$ and $x=\pm\sqrt{2+\sqrt{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.