Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.5 - Equations - 1.5 Exercises - Page 57: 78

Answer

No Real Solution

Work Step by Step

$Find$ $all$ $real$ $solutions$ $of$ $the$ $quadratic$ $equation:$ $w^2 = 3(w-1)$ Distribute the 3 to $(w-1)$ $w^2 = 3w-3$ Subtract 3w from both sides $w^2-3w = 3w-3-3w$ $w^2-3w = -3$ Add 3 to both sides $w^2-3w+3 = -3+3$ $w^2-3w+3=0$ Use the Quadratic Equation Formula: $x = \frac{-b \pm \sqrt {b^2-4ac}}{2a}$ $1w^2-3w+3$ $a = 1, b = -3, c = 3$ $x = \frac{-(-3) \pm \sqrt {(-3)^2- 4(1 \times 3)}}{2(1)}$ $x = \frac{3 \pm \sqrt {9- 12}}{2}$ $x= \frac{3 \pm \sqrt {-3}}{2}$ You can never square root a negative number, so there is no real solution possible No Real Solution
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.