Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 1 - Section 1.5 - Equations - 1.5 Exercises - Page 57: 124

Answer

$a^{3}x^{3}+b^{3}=0$ $(ax)^{3}+b^{3}=0$ $(ax+b)\times((ax)^{2}-axb+b^{2})=0$ $x=\frac{-b}{a}$. $x=\frac{b(1+i\sqrt 3)}{2a}$. $x=\frac{b(1-i\sqrt 3)}{2a}$.

Work Step by Step

$a^{3}x^{3}+b^{3}=0$ $(ax)^{3}+b^{3}=0$ $(ax+b)\times((ax)^{2}-axb+b^{2})=0$ $ax+b=0$ or $(ax)^{2}-axb+b^{2})=0$ With $ax+b=0$, then $x=\frac{-b}{a}$ With $((ax)^{2}-abx+b^{2})=0$, then $x=\frac{ab+\sqrt ((-ab)^{2}-4a^{2}b^{2})}{2(a)^{2}}$ and $x=\frac{ab-\sqrt ((-ab)^{2}-4a^{2}b^{2})}{2(a)^{2}}$. With $x=\frac{ab+\sqrt ((-ab)^{2}-4a^{2}b^{2})}{2(a)^{2}}=\frac{ab+\sqrt (-3a^{2}b^{2})}{2(a)^{2}}=\frac{ab+\sqrt (3a^{2}b^{2}i^{2})}{2(a)^{2}}=\frac{ab+abi\sqrt 3}{2(a)^{2}}=\frac{b(1+i\sqrt 3)}{2a}$. With $x=\frac{ab-\sqrt ((-ab)^{2}-4a^{2}b^{2})}{2(a)^{2}}=\frac{ab-\sqrt (-3a^{2}b^{2})}{2(a)^{2}}=\frac{ab-\sqrt (3a^{2}b^{2}i^{2})}{2(a)^{2}}=\frac{ab-abi\sqrt 3}{2(a)^{2}}=\frac{b(1-i\sqrt 3)}{2a}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.