College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 86: 21

Answer

$\frac{x^{2}+2x+4}{3x}; x\ne-2,0,2;$

Work Step by Step

$\frac{x^{3}-8}{x^{2}-4}. \frac{(x+2)}{3x}$ In the given expression $(x^{3}-8)$ can be written as $(x^{3}-2^{3})$ It is in the form of $(A^{3}-B^{3})$. $(x^{3}-8)$ can be factored using the formula $(A^{3}-B^{3}) = (A-B)(A^{2}+AB+B^{2})$. So, $(x^{3}-2^{3}) = (x-2)(x^{2}+2x+4)$. $(x^{2}-4) = x^{2}-2^{2}$ is the difference of squares and the factors are $(x+2)(x-2)$ $\frac{x^{3}-8}{x^{2}-4}. \frac{x+2}{3x} = \frac{(x-2)(x^{2}+2x+4)}{(x+2)(x-2)} . \frac{(x+2)}{3x}$ The values 2, -2, 0 for $x$ makes the denominator zero. So, we must exclude them. $ = \frac{(x-2)(x^{2}+2x+4)}{(x+2)(x-2)} . \frac{(x+2)}{3x} ; x\ne -2,0,2$ Divide out common factors and the result is $ = \frac{(x^{2}+2x+4)}{3x} ; x\ne -2,0,2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.