Answer
$\frac{(x-2)^{2}}{x}; x \ne 0,2,-2$
Work Step by Step
$(x^{2}-4) = (x^{2}-2^{2})$ is the difference of squares so the factors are $(x+2)(x-2)$
The given expression is written as
$\frac{(x+2)(x-2)}{x}\div \frac{(x+2)}{(x-2)} = \frac{(x+2)(x-2)}{x}\times \frac{(x-2)}{(x+2)} $
Exclude the values 0, 2 and -2 for $x.$ Otherwise they make the denominator zero.
$= \frac{(x+2)(x-2)}{x}\times \frac{(x-2)}{(x+2)} ; x \ne 0,2,-2$
Divide numerator and denominator by common factors.
$=\frac{(x-2)^{2}}{x}; x \ne 0,2,-2$