College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 86: 28

Answer

$\frac{x(x+3)}{(x-1)(x-2)}; x \ne 1,-1,2,-2,-3;$

Work Step by Step

$ \frac{(x^{2}+x)}{x^{2}-4} \div \frac{x^{2}-1}{x^{2}+5x+6}$ Factorize the numerator and the denominators. $ =\frac{x(x+1)}{(x+2)(x-2)} \div \frac{(x+1)(x-1)}{(x+3)(x+2)}$ $x\ne 1,-1,2,-2,-3$ for non-zero denominators. So $ =\frac{x(x+1)}{(x+2)(x-2)} \div \frac{(x+1)(x-1)}{(x+3)(x+2)};x\ne 1,-1,2,-2,-3;$ Invert the divisor and multiply. $ =\frac{x(x+1)}{(x+2)(x-2)} \times \frac{(x+3)(x+2)}{(x+1)(x-1)};x\ne 1,-1,2,-2,-3;$ Divide out common factors. $=\frac{x(x+3)}{(x-1)(x-2)}; x \ne 1,-1,2,-2,-3;$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.