Answer
$\frac{2x-1}{x+3} ;x \ne 0,-3$
Work Step by Step
$\frac{x^{2}-2x}{x^{2}+3x}+ \frac{x^{2}+x}{x^{2}+3x}$
Denominator is the same, so add the numerator.
$= \frac{x^{2}-2x+x^{2}+x}{x^{2}+3x}$
Combine like terms.
$=\frac{ 2x^{2} -x }{x^{2}+3x}$
Take out common factors. Exclude 0, -3 for non-zero denominators.
$=\frac{ x(2x -1) }{x(x+3)};x \ne 0,-3$
Divide out common factors.
$=\frac{2x-1}{x+3} ;x \ne 0,-3$