College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter P - Prerequisites: Fundamental Concepts of Algebra - Exercise Set P.6 - Page 86: 27

Answer

$\frac{2}{3}(x+3) ; x \ne 3,-3,-\sqrt \frac{5}{ 2}$

Work Step by Step

$\frac{4x^{2}+10}{x-3} \div \frac{6x^{2}+15}{(x^{2}-9)}$ Factorize the numerator and denominators. $=\frac{2(2x^{2}+5)}{x-3} \div \frac{3(2x^{2}+5)}{(x+3)(x-3)}$ Invert the divisor and multiply. For non-zero denominators, exclude the numbers 3,-3 and $-\sqrt \frac{5}{ 2}$ for $x$. $=\frac{2(2x^{2}+5)}{x-3} \times \frac{(x+3)(x-3)}{3(2x^{2}+5)}; x \ne 3,-3, -\sqrt \frac{5}{ 2};$ Divide out common factors. $=\frac{2}{3}(x+3) ; x \ne 3,-3,-\sqrt \frac{5}{ 2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.