Answer
$$-\frac{11}{2 \sqrt{6}} $$
Work Step by Step
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{\sqrt{6}-\sqrt{5 h^{2}+11 h+6}}{h} &=\lim _{h \rightarrow 0^{-}}\left(\frac{\sqrt{6}-\sqrt{5 h^{2}+11 h+6}}{h}\right)\left(\frac{\sqrt{6}+\sqrt{5 h^{2}+11 h+6}}{\sqrt{6}+\sqrt{5 h^{2}+11 h+6}}\right) \\
&=\lim _{h \rightarrow 0^{-}} \frac{6-\left(5 h^{2}+11 h+6\right)}{h(\sqrt{6}+\sqrt{5 h^{2}+11 h+6})}\\
&=\lim _{h \rightarrow 0^{-}} \frac{-h(5 h+1)}{h(\sqrt{6}+\sqrt{5 h^{2}+11 h+6})}\\
&=\frac{-(0+11)}{\sqrt{6}+\sqrt{6}}\\
&=-\frac{11}{2 \sqrt{6}}
\end{aligned}