Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 34

Answer

$$\lim _{h \rightarrow 0} \frac{\sin (\sin h)}{\sin h} =1$$

Work Step by Step

Given $$\lim _{h \rightarrow 0} \frac{\sin (\sin h)}{\sin h} $$ Let $ x=\sin h \ \Rightarrow $ at $ h=0 $, we get $ x\rightarrow \sin 0=0$ So, we get \begin{aligned} L&=\lim _{h \rightarrow 0} \frac{\sin (\sin h)}{\sin h} \\ &= \lim _{x \rightarrow 0} \frac{\sin x}{x} \\ &=1 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.