Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 35

Answer

\begin{aligned} \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\sin 2 \theta}= \frac{1}{2} \end{aligned}

Work Step by Step

Given $$\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\sin 2 \theta} $$ So, we get \begin{aligned} L&=\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\sin 2 \theta}\\ &= \lim _{\theta \rightarrow 0} \frac{\sin \theta}{1} \frac{1}{\sin 2 \theta} \\ &= \lim _{\theta \rightarrow 0} \frac{\sin \theta}{ \theta} \frac{ \theta}{\sin 2 \theta} \\ &= \lim _{\theta \rightarrow 0} \frac{\sin \theta}{ \theta} \lim _{\theta \rightarrow 0}\frac{ \theta}{\sin 2 \theta} \\ &=1\cdot \lim _{\theta \rightarrow 0}\frac{ \theta}{\sin 2 \theta} \\ &= \frac{1}{2} \lim _{\theta \rightarrow 0}\frac{ 2\theta}{\sin 2 \theta} \\ &= \frac{1}{2}\frac{1}{ \lim \limits _{\theta \rightarrow 0}\frac{ \sin 2\theta}{ 2 \theta} }\\ &= \frac{1}{2}\cdot\frac{1}{ 1 }\\ &= \frac{1}{2} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.