Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 26

Answer

2

Work Step by Step

We know $$\lim\limits_{\theta \to 0} \dfrac{\mathrm{sin}\left(\theta \right)}{\theta }=1.$$ We will use this fact to compute the limit below. We want to find $$\underset{t\to 0}{\lim}\frac{2t}{\mathrm{tan}\left(t\right)}.$$ Note that $$\frac{2t}{\mathrm{tan}(t)}=\frac{2t}{\left(\frac{\mathrm{sin}\left(t\right)}{\mathrm{cos}\left(t \right)}\right)}=\frac{2t\mathrm{cos}(t)}{\mathrm{sin}\left(t\right)}=\left(\frac{t}{\mathrm{sin}(t)}\right)\left(2\mathrm{cos}\left(t\right)\right).$$ Thus $$\underset{t\to 0}{\lim}\frac{2t}{\mathrm{tan}(t)}=\underset{t\to 0}{\lim}\left(\left(\frac{t}{\mathrm{sin}(t)}\right)\left(2\mathrm{cos}(t) \right)\right)=\left(1\right)\left(2\right)=2.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.