Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 40

Answer

\begin{aligned} \lim _{y \rightarrow 0} \frac{\sin 3 y \cot 5 y}{y \cot 4 y}=\frac{12}{5} \end{aligned}

Work Step by Step

Given $$\lim _{y \rightarrow 0} \frac{\sin 3 y \cot 5 y}{y \cot 4 y}$$ So, we get \begin{aligned} L&=\lim _{y \rightarrow 0} \frac{\sin 3 y \cot 5 y}{y \cot 4 y}\\ &=\lim _{y \rightarrow 0} \frac{\sin 3 y }{y }. \frac{ \cot 5 y}{ \cot 4 y}\\ &=3\lim _{y \rightarrow 0} \frac{\sin 3 y }{3y }. \frac{ \cot 5 y}{ \cot 4 y}\\ &=3\lim _{y \rightarrow 0} \frac{\sin 3 y }{3y }.\lim _{y \rightarrow 0} \frac{ \cot 5 y}{ \cot 4 y}\\ &=3\cdot 1\cdot \lim _{y \rightarrow 0} \frac{ \cot 5 y}{ \cot 4 y}\\ &=3\lim _{y \rightarrow 0} \frac{ \cot 5 y}{ \cot 4 y}\\ &=3 \lim _{y \rightarrow 0} \frac{\sin 4 y}{\sin 5 y} \cdot \frac{\cos 5 y}{\cos 4 y}\\ &=\frac{1}{3} \lim _{y \rightarrow 0} \frac{\sin 4 y}{\sin 5 y} \cdot \lim _{y \rightarrow 0} \frac{\cos 5 y}{\cos 4 y}\\ &=3 \lim _{y \rightarrow 0} \frac{\sin 4 y}{\sin 5 y} \cdot \frac{\cos 0}{\cos 0}\\ &=3 \lim _{y \rightarrow 0} \frac{\sin 4 y}{\sin 5 y} \cdot 1\\ &=3 \lim _{y \rightarrow 0} \frac{\sin 4 y}{\sin 5 y} \\ &=3 \lim _{y \rightarrow 0} \frac{\frac{\sin 4 y}{y}}{\frac{\sin 5 y}{y}} \\ &=3 \lim _{y \rightarrow 0} \frac{4\frac{\sin 4 y}{4y}}{5\frac{\sin 5 y}{5y}} \\ &=\frac{12}{5}\frac{ \lim\limits _{y \rightarrow 0} \frac{\sin 4 y}{4y}}{ \lim \limits_{y \rightarrow 0} \frac{\sin 5 y}{5y}} \\ &=\frac{12}{5}\frac{1}{1} \\ &=\frac{12}{5} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.