Answer
$$\lim _{t \rightarrow 0} \frac{\sin (1-\cos t)}{1-\cos t} =1$$
Work Step by Step
Given $$\lim _{t \rightarrow 0} \frac{\sin (1-\cos t)}{1-\cos t} $$
Let $ x=1-\cos t \ \Rightarrow $ at $ t=0 $, we get $ x\rightarrow0$
So, we get
\begin{aligned} L&=\lim _{t \rightarrow 0} \frac{\sin (1-\cos t)}{1-\cos t} \\
&= \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
&=1
\end{aligned}