Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 36

Answer

\begin{aligned} \lim _{x \rightarrow 0} \frac{\sin 5 x }{\sin 4 x}=\frac{5}{4} \end{aligned}

Work Step by Step

Given $$\lim _{x \rightarrow 0} \frac{\sin 5 x }{\sin 4 x} $$ So, we get \begin{aligned} L&=\lim _{x \rightarrow 0} \frac{\sin 5 x }{\sin 4 x}\\ &= \lim _{x \rightarrow 0} \frac{\sin 5 x}{1} \frac{1}{\sin 4 x} \\ &= \lim _{x \rightarrow 0} \frac{\sin 5 x}{ x} \frac{ x}{\sin 4 x} \\ &= 5\lim _{x\rightarrow 0} \frac{\sin 5x}{5 x} \cdot \frac{1}{4}\lim _{x \rightarrow 0}\frac{ 4x}{\sin 4 x} \\ &=5\cdot 1 \cdot \frac{1}{4} \lim _{x \rightarrow 0}\frac{ 4x}{\sin 4 x} \\ &= \frac{5}{4}\frac{1}{ \lim \limits _{x \rightarrow 0}\frac{ \sin 4x}{ 4 x} }\\ &= \frac{5}{4}\cdot\frac{1}{ 1 }\\ &= \frac{5}{4} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.