Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 31

Answer

$$ \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin 2 \theta}=0 $$

Work Step by Step

Given $$ \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin 2 \theta} $$ So, we get \begin{aligned} L&= \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\sin 2 \theta} \\ &=\lim _{\theta \rightarrow 0}\left(\frac{\theta}{\sin 2 \theta} \cdot \frac{1-\cos \theta}{\theta}\right)\\ &=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin 2 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}\\ &=\lim _{\theta \rightarrow 0}\left(\frac{1}{2} \cdot \frac{2 \theta}{\sin 2 \theta}\right) \cdot \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}\\ &=\frac{1}{2} \lim _{\theta \rightarrow 0} \frac{2 \theta}{\sin 2 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}\\ &=\frac{1}{2} \cdot 1 \cdot 0 \end{aligned} Where, \begin{aligned} \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}&= \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}\frac{1+\cos \theta}{1+\cos \theta}\\ &= \lim _{\theta \rightarrow 0} \frac{1-\cos^2 \theta}{\theta(1+\cos \theta)}\\ &= \lim _{\theta \rightarrow 0} \frac{\sin^2 \theta}{\theta(1+\cos \theta)}\\ &= \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot\lim _{\theta \rightarrow 0} \sin \theta \cdot\lim _{\theta \rightarrow 0} \frac{1}{(1+\cos \theta)}\\ &= 1\cdot\sin 0\cdot \frac{1}{(1+\cos 0)}\\ &=0 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.