Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 38

Answer

\begin{aligned} \lim _{\theta \rightarrow 0} \sin \theta \cot 2 \theta=\frac{1}{2} \end{aligned}

Work Step by Step

Given $$\lim _{\theta \rightarrow 0} \sin \theta \cot 2 \theta $$ So, we get \begin{aligned} L&=\lim _{\theta \rightarrow 0} \sin \theta \cot 2 \theta\\ &=\lim _{\theta \rightarrow 0} \sin \theta \frac{\cos 2 \theta}{\sin 2 \theta}\\ &=\lim _{\theta \rightarrow 0} \cos 2 \theta \cdot \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\sin 2 \theta}\\ &= \cos 0 \cdot \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\sin 2 \theta}\\ &= 1 \cdot\lim _{\theta \rightarrow 0}\frac{\sin \theta}{ 1} \cdot \frac{1}{\sin 2 \theta}\\ &= \lim _{\theta \rightarrow 0}\frac{\sin \theta}{ \theta} \cdot \frac{\theta}{\sin 2 \theta}\\ &= \lim _{\theta \rightarrow 0}\frac{\sin \theta}{ \theta} \cdot \frac{1}{2}\lim _{\theta \rightarrow 0} \frac{2\theta}{\sin 2 \theta}\\ &= 1\cdot\frac{1}{2}\frac{1}{ \lim\limits _{\theta \rightarrow 0} \frac{\sin 2 \theta}{2 \theta}}\\ &= \frac{1}{2}\cdot\frac{1}{ 1}\\\\ &=\frac{1}{2} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.