Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 30

Answer

$$\lim _{x \rightarrow 0} \frac{x^{2}-x+\sin x}{2 x}=0$$

Work Step by Step

Given $$\lim _{x \rightarrow 0} \frac{x^{2}-x+\sin x}{2 x}$$ So, we get \begin{aligned}L&=\lim _{x \rightarrow 0} \frac{x^{2}-x+\sin x}{2 x}\\ &=\lim _{x \rightarrow 0}\left(\frac{x^{2}}{2 x}-\frac{x}{2 x}+\frac{\sin x}{2 x}\right)\\ &=\lim _{x \rightarrow 0}\left(\frac{1}{2} \cdot x-\frac{1}{2}+\frac{1}{2} \cdot \frac{\sin x}{x}\right)\\ &= \lim _{x \rightarrow 0} \frac{1}{2} \cdot x-\lim _{x \rightarrow 0} \frac{1}{2}+\lim _{x \rightarrow 0} \frac{1}{2} \cdot \frac{\sin x}{x}\\ &=0- \frac{1}{2}+\frac{1}{2} \cdot \lim _{x \rightarrow 0} \frac{\sin x}{x}\\ &=-\frac{1}{2}+\frac{1}{2} \cdot 1\\ &=-\frac{1}{2}+\frac{1}{2}\\ &=0 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.