Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 32

Answer

$$ \lim _{x \rightarrow 0}\frac{x(1-\cos x)}{\sin ^2 3 x} =0$$

Work Step by Step

Given $$ \lim _{x \rightarrow 0}\frac{x(1-\cos x)}{\sin ^2 3 x} $$ So, we get \begin{aligned} L&=\lim _{x \rightarrow 0}\frac{x(1-\cos x)}{\sin ^2 3 x} \\ &= \lim _{x \rightarrow 0}\frac{x(1-\cos x)}{\sin 3 x \cdot \sin 3 x}\\ &= \lim _{x \rightarrow 0}\left(\frac{ x}{\sin 3 x}\right)\left(1-\cos x\right)\left(\frac{1}{\sin 3 x}\right)\\ &= \lim _{x \rightarrow 0}\left(\frac{1}{3}\right)\left(\frac{3 x}{\sin 3 x}\right)\left(\frac{1-\cos x}{x}\right)\left(\frac{ x}{\sin 3 x}\right)\\ &= \left(\frac{1}{3}\right)\lim _{x \rightarrow 0}\left(\frac{3 x}{\sin 3 x}\right)\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x}\right)\lim _{x \rightarrow 0}\left(\frac{ x}{\sin 3 x}\right)\\ &= \frac{1}{3}\lim _{x \rightarrow 0}\left(\frac{3 x}{\sin 3 x}\right)\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x}\right)\lim _{x \rightarrow 0} \frac{1}{3}\left(\frac{3 x}{\sin 3 x}\right)\\ &=\frac{1}{3}\cdot 0\cdot\frac{1}{3} \\ &=0 \end{aligned} Where, \begin{aligned} \lim _{x \rightarrow 0} \frac{1-\cos x}{x}&= \lim _{x \rightarrow 0} \frac{1-\cos x}{x}\frac{1+\cos x}{1+\cos x}\\ &= \lim _{x \rightarrow 0} \frac{1-\cos^2 x}{x(1+\cos x)}\\ &= \lim _{x \rightarrow 0} \frac{\sin^2 x}{x(1+\cos x)}\\ &= \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot\lim _{x \rightarrow 0} \sin x \cdot\lim _{x \rightarrow 0} \frac{1}{(1+\cos x)}\\ &= 1\cdot\sin 0\cdot \frac{1}{(1+\cos 0)}\\ &=0 \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.