Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 17

Answer

a. $1$ b. $-1$

Work Step by Step

a. For $x\to-2^+$, we have $x+2\gt0$, thus $\lim_{x\to-2^+}(x+3)\frac{|x+2|}{x+2}=\lim_{x\to-2^+}(x+3)\frac{x+2}{x+2}=\lim_{x\to-2^+}(x+3)=-2+3=1$ b. For $x\to-2^-$, we have $x+2\lt0$, thus $\lim_{x\to-2^-}(x+3)\frac{|x+2|}{x+2}=\lim_{x\to-2^+}(x+3)\frac{-(x+2)}{x+2}=-\lim_{x\to-2^+}(x+3)=-(-2+3)=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.