Answer
a. $1$
b. $-1$
Work Step by Step
a. For $x\to-2^+$, we have $x+2\gt0$, thus $\lim_{x\to-2^+}(x+3)\frac{|x+2|}{x+2}=\lim_{x\to-2^+}(x+3)\frac{x+2}{x+2}=\lim_{x\to-2^+}(x+3)=-2+3=1$
b. For $x\to-2^-$, we have $x+2\lt0$, thus $\lim_{x\to-2^-}(x+3)\frac{|x+2|}{x+2}=\lim_{x\to-2^+}(x+3)\frac{-(x+2)}{x+2}=-\lim_{x\to-2^+}(x+3)=-(-2+3)=-1$