Answer
$\frac{(x-5)}{(x-4)}$
Work Step by Step
$=\frac{x^2-25}{x^2-16}\times\frac{x+4}{x+5}$
Multiply the two fractions:
$=\frac{(x^2-25)(x+4)}{(x^2-16)(x+5)}$
Factorise $x^2-25$:
$=\frac{(x-5)(x+5)(x+4)}{(x^2-16)(x+5)}$
Factorise $x^2-16$:
$=\frac{(x-5)(x+5)(x+4)}{(x-4)(x+4)(x+5)}$
Simplify the fraction:
$=\frac{(x-5)}{(x-4)}$