Answer
$\frac{3x+2}{(x+1)^{2}}$
Work Step by Step
$\frac{x}{(x+1)^{2}}+\frac{2}{x+1}$
Find the lowest common denominator (i.e. $x+1$) and adjust the fractions accordingly:
$=\frac{x}{(x+1)^{2}}+\frac{2\times (x+1)}{(x+1)\times (x+1)}$
Expand any brackets:
$=\frac{x}{(x+1)^{2}}+\frac{2x+2}{(x+1)^{2}}$
Combine the fractions:
$=\frac{x+2x+2}{(x+1)^{2}}$
Collect the like terms:
$=\frac{3x+2}{(x+1)^{2}}$