Answer
$\dfrac{x+\dfrac{y}{x}}{y+\dfrac{x}{y}}=\dfrac{y(x^{2}+y)}{x(y^{2}+x)}$
Work Step by Step
$\dfrac{x+\dfrac{y}{x}}{y+\dfrac{x}{y}}$
Evaluate the sums:
$\dfrac{x+\dfrac{y}{x}}{y+\dfrac{x}{y}}=\dfrac{\dfrac{x^{2}+y}{x}}{\dfrac{y^{2}+x}{y}}=...$
Evaluate the division and simplify:
$...=\dfrac{y(x^{2}+y)}{x(y^{2}+x)}$