Answer
$\frac{x-4}{x+1}$
Work Step by Step
$\frac{3x-2}{x+1}-2$
Convert the element 2 to a fraction:
$=\frac{3x-2}{x+1}-\frac{2}{1}$
Multiply the element by the denominator of the fraction containing variables:
$=\frac{3x-2}{x+1}-\frac{2\times (x+1)}{1\times (x+1)}$
Expand the fraction:
$=\frac{3x-2}{x+1}-\frac{2x+2}{x+1}$
Combine the fractions:
$=\frac{3x-2-(2x+2)}{x+1}$
Expand the negative sign:
$=\frac{3x-2-2x-2}{x+1}$
Collect the like terms:
$=\frac{x-4}{x+1}$