Answer
$\frac{x-3}{x+2}$
Work Step by Step
$\frac{x^2+2x-15}{x^2-25}\times\frac{x-5}{x+2}$
Simplify $\frac{x^2+2x-15}{x^2-25}$:
$=\frac{(x+5)(x-3)}{(x-5)(x+5)}$
$=\frac{(x-3)}{(x-5)}$
So it becomes:
$=\frac{x-3}{x-5}\times\frac{x-5}{x+2}$
Multiply the two fractions (note: $x-5$ cancels out.):
$=\frac{x-3}{x+2}$