Answer
$\frac{10x-18}{(2x-3)^{2}}$
Work Step by Step
$\frac{5}{2x-3}-\frac{3}{(2x-3)^{2}}$
Find the lowest common denominator (i.e. $(2x-3)$) and adjust the fractions:
$=\frac{5\times (2x-3)}{(2x-3)^{2}}-\frac{3}{(2x-3)^{2}}$
Expand any brackets:
$=\frac{10x-15}{(2x-3)^{2}}-\frac{3}{(2x-3)^{2}}$
Combine the fractions:
$=\frac{10x-15-3}{(2x-3)^{2}}$
Collect like terms:
$=\frac{10x-18}{(2x-3)^{2}}$