Answer
$\dfrac{\dfrac{x^{3}}{x+1}}{\dfrac{x}{x^{2}+2x+1}}=x^{2}(x+1)$
Work Step by Step
$\dfrac{\dfrac{x^{3}}{x+1}}{\dfrac{x}{x^{2}+2x+1}}$
Factor the denominator of the denominator:
$\dfrac{\dfrac{x^{3}}{x+1}}{\dfrac{x}{x^{2}+2x+1}}=\dfrac{\dfrac{x^{3}}{x+1}}{\dfrac{x}{(x+1)^{2}}}=...$
Evaluate the division:
$...=\dfrac{x^{3}(x+1)^{2}}{x(x+1)}=...$
Simpify:
$...=x^{2}(x+1)$