Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 54: 1A.10(a)

Answer

Assuming ideal gas assumption to hold valid, then we know, $$ \begin{aligned} p \cdot V &=n \cdot R \cdot T \\ p \cdot V &=\left(\frac{m}{M}\right) \cdot R \cdot T \\ M &=\left(\frac{m}{V}\right) \cdot\left(\frac{1}{p}\right) \cdot R \cdot T \\ M &=\frac{\rho \cdot R \cdot T}{p} \end{aligned} $$ where, $\mathrm{m}=$ Mass of the gas, $\mathrm{M}=$ Molar mass of the gas, $\rho=$ mass density of the gas From the question we know, $\rho=1.146 \frac{\mathrm{Kg}}{\mathrm{m}^{3}}=1.146 \frac{\mathrm{g}}{\text { litre }}$ $\mathrm{p}=0.987 \mathrm{bar}=0.974 \mathrm{atm}$ $\mathrm{T}=27^{\circ} \mathrm{C}=300.15 \mathrm{K}$ Substituting the values in the equation, $$ \begin{aligned} M &=\frac{1.146 \times 0.0821 \times 300.15}{0.974} \mathrm{g} \\ &=29 \mathrm{g} \end{aligned} $$ Hence the molar mass of the air is 29 $\mathrm{g}$ Let the mole fraction of Oxygen be $x$ and mole fraction of Nitrogen be $1-x$ Assuming only two gases, $\begin{aligned} \text { Molar mass of gas } &=x \times \text { Molar mass of oxygen }+(1-x) \times \text { Molar mass of Nitrogen } \\ 29 \mathrm{g} &=x \times 32+(1-x) \times 28 \mathrm{g} \\ x &=0.25 \end{aligned}$ Hence the mole fraction of Oxygen is 0.25 and mole fraction of Nitrogen is $0.75 .$ Calculating partial pressure, $$ \begin{aligned} \text { Partial pressure of a gas } &=\text { Mole fraction of the gas } \times \text { Pressure } \\ \text { Partial pressure of Oxygen } &=0.25 \times 0.987 \text { bar }=0.246 \text { bar } \\ \text { Partial pressure of Nitrogen } &=0.75 \times 0.987 \text { bar }=0.740 \text { bar } \end{aligned} $$ --- The pressure of the system is 0.028 atm and volume is 31 liters

Work Step by Step

--
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.