Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 54: 1A.5(a)

Answer

$$0.50 \space m^3$$

Work Step by Step

Boyle's law: $p_iV_i = p_fV_f$ $1 \space atm = 101325 \space Pa$ $(100 \space cm)^3 = (1\space m)^3 \longrightarrow 10^6 \space cm^3 = 1 \space m^3$ $p_f = p_i + \rho gh$ $p_i = 1 \space atm$ (Sea level) $$\rho gh =(1.025 \space g \space cm^{-3})(9.81 \space ms^{-2})(50 \space m) $$ $$\rho gh = 502.7625 \space \frac{g \space m^2}{cm^{3} s^2} \times \frac{10^6 \space cm^3}{1 \space m^3} \times \frac{1 \space kg}{1000 \space g}$$ $$\rho gh = 5.027625 \space 10^5 \space \frac{kg \space m}{s^2 \space m^2} = 5.027625 \space 10^5 \space Pa$$ $$p_f = 1 \space atm + 5.027625 \space 10^5 \space Pa$$ $$p_f = 101325 \space Pa + 5.027625 \space 10^5 \space Pa = 604087.5 \space Pa$$ $$(101325 \space Pa)(3.0 \space m^3) = (604087.5 \space Pa)V_f$$ $$V_f = \frac{(101325 \space Pa)(3.0 \space m^3)}{604087.5 \space Pa} = 0.50 \space m^3$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.