Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 54: 1A.4(b)

Answer

\begin{equation} 2660 \mathrm{Kg} \end{equation}

Work Step by Step

As per the information in the question, assuming methane to behave as a perfect gas under the conditions provided we can apply the perfect gas equation i.e, $$ p \cdot V=n \cdot R \cdot T\quad\quad\quad\quad(1) $$ Volume of the gas $=\mathrm{V}=4 \times 10^{3} \mathrm{m}^{3}=4 \times 10^{6}$ litre Pressure $=\mathrm{p}=1 \mathrm{atm}$ Temperature $=\mathrm{T}=20^{\circ} \mathrm{C}=293.15 \mathrm{K}$ Substituting the values in the ideal gas equation we have, $$ \begin{aligned} p \cdot V &=n \cdot R \cdot T \\ n &=\frac{p \cdot V}{R \cdot T} \\ &=\frac{1 \times 4 \times 10^{6}}{0.0821 \times 293.15} \text { moles } \\ &=166.2 \times 10^{3} \mathrm{moles} \end{aligned} $$ So the numbers of moles of methane required to cover the house under the given conditions is $166.2 \times 10^{3}$ moles Now, Mass of methane required $=$ Moles of Methane required $\times$ Molar Mass of Methane $$ \begin{aligned} &=166.2 \times 10^{3} \text { moles } \times 16 \frac{\mathrm{g}}{\mathrm{mole}} \\ &=2.66 \times 10^{6} \mathrm{g}=2660 \mathrm{Kg} \end{aligned} $$ Hence 2660 $\mathrm{Kg}$ of methane gas is required to cover the volume under the defined conditions
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.