Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 54: 1A.9(b)

Answer

\begin{equation} 2717\ \mathrm{g} \end{equation}

Work Step by Step

Assuming ideal gas assumption to hold valid, then we know, $$ p \cdot V=n \cdot R \cdot T \quad\quad\quad\quad(1) $$ Relative humidity of a gas is defined as the ratio of the partial pressure of water vapour to that of the equilibrium vapour pressure of water at a given temperature. At $23^{\circ} \mathrm{C}$ the equilibrium water vapour pressure $=0.0277$ atm. Hence $$ \text { Relative Humidity }=\frac{\text { Partial Pressure of water vapour }}{\text { Equilibrium Pressure }} $$ $$ \text { Partial Pressure of water vapour }=0.53 \times 0.0277=0.01468 \text { atm } $$ we know, Volume $=\mathrm{V}=250 \mathrm{m}^{3}=2.5 \times 10^{5}$ litre Temperature $=\mathrm{T}=23^{\circ} \mathrm{C}=296.15 \mathrm{K}$ Pressure $=\mathrm{p}=0.01468 \mathrm{atm}$ Substituting the values in the ideal gas equation we get, $\begin{aligned} p \cdot V &=n \cdot R \cdot T \\ n &=\frac{p \cdot V}{R \cdot T} \\ n &=\frac{0.01468 \times 2.5 \times 10^{5}}{0.0821 \times 296.15} \mathrm{moles} \\ &=150.94 \text { moles } \\ \frac{\text { Mass of water }}{\text { Mass of water }} &=150.94 \text { moles } \\ &=150.94 \text { molar mass of water } \\ &=150.94 \times 18 \mathrm{g} \\ &=2717 \mathrm{g} \end{aligned}$ Hence the mass of water vapour present in the room is 2717 $\mathrm{g}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.