Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 54: 1A.7(a)

Answer

$$8317 \space Pa \space dm^3 \space mol^{-1} \space K^{-1}$$

Work Step by Step

1. Write the perfect gas law, and solve for $R$: $$pV = nRT \longrightarrow R = \frac{pV}{nT}$$ 2. Find p, V, n and T: $p = p_{H_2O} = \rho gh $ $p = \rho gh = (0.99707 \space g \space cm^{-3} )(9.81 \space ms^{-2})(206.402 \space cm) \times \Big(\frac{100 \space cm}{1 \space m} \Big)^2$ $p = 20188709 \space gm^{-1}s^{-2} \times \frac{1 \space kg}{1000 \space g} \approx 20188.7 \space Pa $ $V = 20.000 \space dm^3$ $$n = \frac{mass}{molar \space mass \space (He)} = \frac{0.25132 \space g}{4.0026 \space g/mol} = 0.062789 \space mol$$ T must be in $K$: $T(K) = T(C) + 273.15 = 500 + 273.15 = 773.15$ 3. Calculate $R$: $$R = \frac{(20188.7 \space kPa)(20.000 \space dm^3)}{(0.062789 \space mol)(773.15 \space K)} = 8317 \space Pa \space dm^3 \space mol^{-1} \space K^{-1}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.