Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 54: 1A.7(b)

Answer

From the ideal gas equation i.e.: $$ p \cdot V=n \cdot R \cdot T \quad\quad\quad\quad(1) $$ We can calculate the values of the universal gas constant from each of scenarios provided in the question. $$ \begin{aligned} p \cdot V &=n \cdot R \cdot T \\ R &=p \cdot\left(\frac{V}{n}\right) \cdot\left(\frac{1}{T}\right) \\ &=p \cdot\left(V_{m}\right) \cdot\left(\frac{1}{T}\right) \end{aligned} $$ Now substituting the values provided in each of the scenarios we have i) $$ \begin{aligned} R &=\frac{0.750 \times 29.8649}{273.15} \\ &=0.082001 \frac{\text { litre atm }}{\mathrm{K} \cdot \text { mol }} \end{aligned} $$ ii) $$ \begin{aligned} R &=\frac{0.50 \times 44.8090}{273.15} \\ &=0.082022 \frac{\text { litre } \cdot \mathrm{atm}}{\mathrm{K} \cdot \mathrm{mol}} \end{aligned} $$ iii) $$ \begin{aligned} R &=\frac{0.25 \times 89.6384}{273.15} \\ &=0.082041 \frac{\text { litre } \cdot \mathrm{atm}}{\mathrm{K} \cdot \mathrm{mol}} \end{aligned} $$ The closest value to the actual universal gas constant is provided by the values provided in the scenario i

Work Step by Step

--
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.