Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 54: 1A.11(b)

Answer

$$16.4 \space g/mol$$

Work Step by Step

1. Convert the volume to $dm^3$: $$1 \space dm^3 = 1000 \space cm^3$$ $$250 \space cm^3 \times \frac{1 \space dm^3}{1000 \space cm^3} = 0.250 \space dm^3$$ 2. Calculate the molar volume. $$pV_m = RT$$ $$V_m = \frac{RT}{p} = \frac{(62.364 \space Torr \space dm^3 \space K^{-1} \space mol^{-1})(298 \space K)}{152 \space Torr}$$ $$V_m = 122.27 \space dm^3 \space mol^{-1}$$ 3. Find the amount of moles: $$n = \frac{0.250 \space dm^3}{122.27\space dm^3 \space mol^{-1}} = 0.002045 \space mol$$ 4. Calculate the molar mass of that compound: $$M = \frac{mass}{n} = \frac{33.5 \space mg}{0.002045 \space mol} = 16400 \space mg/mol $$ $$16400 \times 10^{-3} \space g/mol$$ $$16.4 \space g/mol$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.