Physical Chemistry: Thermodynamics, Structure, and Change

Published by W. H. Freeman
ISBN 10: 1429290196
ISBN 13: 978-1-42929-019-7

Chapter 1 - Topic 1A - The perfect gas - Exercises - Page 54: 1A.9(a)

Answer

\begin{equation} 6165 \mathrm{g} \end{equation}

Work Step by Step

Assuming ideal gas assumption to hold valid, then we know, $$ p \cdot V=n \cdot R \cdot T \quad\quad\quad\quad\quad(1) $$ Relative humidity of a gas is defined as the ratio of the partial pressure of water vapour to that of the equilibrium vapour pressure of water at a given temperature. At $27^{\circ} \mathrm{C}$ the equilibrium water vapour pressure $=0.03513$ atm. Hence $\begin{aligned} \text { Relative Humidity } &=\frac{\text { Partial Pressure of water vapour }}{\text { Equilibrium Pressure }} \\ \text { Partial Pressure of water vapour } &=0.6 \times 0.03513=0.0211 \mathrm{atm} \end{aligned}$ we know, Volume $=\mathrm{V}=400 \mathrm{m}^{3}=4 \times 10^{5}$ litre Temperature $=\mathrm{T}=27^{\circ} \mathrm{C}=300.15 \mathrm{K}$ Pressure $=\mathrm{p}=0.0211 \mathrm{atm}$ Substituting the values in the ideal gas equation we get, $$ \begin{aligned} p \cdot V &=n \cdot R \cdot T \\ n &=\frac{p \cdot V}{R \cdot T} \\ n &=\frac{0.0211 \times 4 \times 10^{5}}{0.0821 \times 300.15} \mathrm{moles} \\ &=342.5 \text { moles } \end{aligned} $$ $\begin{aligned} \frac{\text { Mass of water }}{\text { Molar mass of water }} &=342.5 \text { moles } \\ \text { Molar mass of water } &=342.5 \times \text { Molar mass of water } \\ &=342.5 \times 18 \mathrm{g} \\ &=6165 \mathrm{g} \end{aligned}$ Hence the mass of water vapour present in the room is 6165 $\mathrm{g}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.